
© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

1

A «new»

Static

Analyzer:

The

Compiler

June 2019

Ada-Europe 2019 – Warsaw - Poland

Maurizio Martignano

Spazio IT – Soluzioni Informatiche s.a.s

Via Manzoni 40

46030 San Giorgio Bigarello, Mantova

https://www.spazioit.com

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

2

Agenda

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

3

Agenda

◼ Need for Speed

◼ Libraries, Libraries and again Libraries
(libadalang)

◼ Clang/LLVM – SonarQube

◼ SAFe Toolset

◼ Future Activities

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

4

Need for Speed

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

5

Need for Speed

◼ The size of software codebases is increasing dramatically:

◼ Compilers and Static Analyzers need to be fast and
efficient (i.e. able to “digest” large codebases in a
reasonable time).

June 2019

Year System Size

1974 F16A Plane 135 K

1981 Space Shuttle PFS 400 K

2008 ESA ATV 1 M

2012 NASA Curiosity 2.5 M

2012 F35 Plane 10 M

Nowadays Car 10-150 M

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

6

Need for Speed

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

7

Need for Speed

◼ Deep vs. Shallow Parsing

◼ Unforgiving vs. Forgiving Parsing

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

8

Libraries, Libraries and Again

Libraries

June 2019

AST

LEX

SEMA

AST

LEX

SEMA

Static Analyzer Compiler

Are we siblings? I don’t know!

Do you use my libraries?

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

9

Libraries, Libraries and Again

Libraries

◼ Suppose that for a given language we have a compiler and a
static analyzer that are two separate software products, using
different libraries and technologies (each one of them as its own
lexer, parser, semantic analyzer and so on).

◼ Suppose the developer community behind that language and
tools is not very big and doesn’t have many resources, lots of
energy.

◼ In case the language changes, evolves, for whatever reason,
which of the two tools (the compiler or the static analyzer) will
keep up with the language evolution?

◼ In the same way, which of the two tools will be more
performant?

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

10

Libraries, Libraries and Again

Libraries

◼ PC-Lint does not support the latest C/C++ Standards.

◼ Frama-C Semantic Analyzer cannot process all C/C++
constructs.

◼ Cppcheck sometimes stops when “digesting” “strange”
codebases (e.g. Brotli).

◼ Ada ASIS does not support Ada 2012 (but the GNAT compiler
does).

◼ In the Ada “libadalang” GitHub website we have: “Libadalang
does not (at the moment) provide full legality checks for the
Ada language. If you want such a functionality, you’ll need to
use a full Ada compiler, such as GNAT.”

◼ and so on…

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

11

Libraries, Libraries and Again

Libraries

◼ “The LLVM Project is a collection of modular and
reusable compiler and toolchain technologies. (…) The
LLVM Core libraries provide a modern source- and
target-independent optimizer, along with code generation
support for many CPUs. (…) Clang is an LLVM native
C/C++/Objective-C compiler, which aims to deliver
amazingly fast compiles.”

◼ In fewer words Clang/LLVM is a compilation toolchain
where absolutely everything is built in a modular fashion
as collection of reusable libraries.

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

12

Libraries, Libraries and Again

Libraries

◼ In the Clang/LLVM toolchain the two static analyzers are
Clang-Check (a.k.a. Clang-SA) and Clang-Tidy.

◼ Clang-Check relies on a set of Clang modules to perform
things like lexical analysis, parsing, semantic analysis,
AST manipulation and the like.

◼ Clang-Tidy relies on the very same Clang modules plus
some additional modules of Clang-Check itself (this is
why Clang-Tidy can be considered a sort of superset of
Clang-Check).

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

13

Libraries, Libraries and Again

Libraries

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

14

Libraries, Libraries and Again

Libraries

◼ “libclang” is nothing but a simple C API (with Python
bindings) exposing Clang functionalities (i.e. modules) to
external applications (deep / forgiving parsing);

◼ thanks to “libclang” also these third-party applications
can use the very same modules/libraries of Clang (for
instance they could parse a C program as efficiently as
Clang does).

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

15

Libraries, Libraries and Again

Libraries

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

16

libadalang

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

17

libadalang

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

18

libadalang

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

19

libadalang

◼ Interesting related projects:

– libadalang-tools - Libadalang-based tools

– lal-checkers - Libadalang-based code checking
infrastructure

– ada_language_server - prototype implementation of
the Microsoft Language Server Protocol for
Ada/SPARK

– langkit - Language creation framework.

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

20

Clang / LLVM – SonarQube

Integration

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

21

SonarQube – What is it?

June 2019

Source Code

Files

SonarQube

Database

SonarQube

Engine

Analyses

Results

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

22

SonarQube / Plugins / Sensors

June 2019

SonarQube

Plugin-M
e.g. Java

Plugin-I
e.g. C/C++

Plugin-1
e.g. Ada

Sensor-J
e.g. PC-Lint

Sensor-M
e.g. GCOV

Sensor-1
eg. CppCheck

Post-Processing
e.g. MeausreComputers

(Ex. Decorators)

Pre-Processing
e.g. scanning

and parsing

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

23

SonarQube C++ plugin

(Community)

◼ Parser supporting C89, C99, C11, C++03, C++11, C++14 and C++17 standards

– Microsoft extensions: C++/CLI, Attributed ATL

– GNU extensions

– CUDA extensions

◼ Sensors for static code analysis:

– Cppcheck warnings support (http://cppcheck.sourceforge.net/)

– GCC/G++ warnings support (https://gcc.gnu.org/)

– Clang Static Analyzer support (https://clang-analyzer.llvm.org/)

– Clang Tidy warnings support (http://clang.llvm.org/extra/clang-tidy/)

– PC-Lint warnings support (http://www.gimpel.com/)

– (…) many others

June 2019

http://cppcheck.sourceforge.net/
https://gcc.gnu.org/
https://clang-analyzer.llvm.org/
http://clang.llvm.org/extra/clang-tidy/
http://www.gimpel.com/

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

24

Clang / LLVM – SonarQube

Integration

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

25

SAFe Toolset

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

26

SAFe Toolset

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

27

SAFe Toolset

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

28

SAFe Toolset

◼ The SAFe Toolset is an Ubuntu Virtual Machine containing
various open source tools that can be used to perform
Software Verification and Validation.

◼ In particular the current version (June 2019) of the SAFe VM
contains:
– cppcheck – v. 1.87 - http://cppcheck.sourceforge.net/ - a C/C++ static

analyzer.

– Clang – v. 9.0.0 - https://clang.llvm.org – the “new” compiler toolset
from LLVM Foundation, with its Clang-SA and Clang-Tidy static
analyzers.

– SonarQube – v. 7.7. – https://www.sonarqube.org/ - a code quality
platform used to show and manage the issues found by the static
analyzers.

June 2019

http://cppcheck.sourceforge.net/
https://clang.llvm.org/
https://www.sonarqube.org/

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

29

SAFe Toolset

◼ Optionally the SAFe VM may also contain:
– PC-Lint (or PC-Lint Plus) – v. 9.0.0L - https://www.gimpel.com/ - but its

license needs to be acquired from Gimpel.

◼ Apart from the static analyzers the SAFe VM contains also
some (native and cross) build environments, that is:
– GNU GCC Version 7.3.0 - https://gcc.gnu.org/gcc-7/ - Native

– Clang Version 9.0.0 - - https://clang.llvm.org - Native and Cross
(Multiplatforms – use the command “llc --version” to see the supported
architectures).

– BCC2: Bare-C Cross-Compiler System for LEON2/3/4 GCC 7.2.0 -
https://www.gaisler.com/ - Cross.

– GNU Arm Embedded Toolchain - v. 5-2016-q3 -
https://launchpad.net/gcc-arm-embedded - Cross.

June 2019

https://www.gimpel.com/
https://gcc.gnu.org/gcc-7/
https://clang.llvm.org/
https://www.gaisler.com/
https://launchpad.net/gcc-arm-embedded

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

30

SAFe Toolset

◼ Should a user need to work on a codebase not supported by the
provided build environments, she would need to install the
corresponding compilation toolchain.

◼ Additionally Spazio IT has complemented the SAFe Toolset
with:

– a specially modified version of SonarQube -
https://www.sonarqube.org/ ;

– a specially modified version of the SonarQube C++ Community
Plugin - https://github.com/SonarOpenCommunity/sonar-cxx ;

– the SAFacilitator – an application largely simplifying the static
analyzers usage and the integration of their results into
SonarQube – more info @
https://www.spazioit.com/pages_en/sol_inf_en/code_quality_en/safe-
toolset/

June 2019

https://www.sonarqube.org/
https://github.com/SonarOpenCommunity/sonar-cxx
https://www.spazioit.com/pages_en/sol_inf_en/code_quality_en/safe-toolset/

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

31

SAFe Toolset

◼ The development of the SAFe Toolset has been funded by
the European Space Agency Contract # RFP/3-
15558/18/NL/FE/as.

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

32

Future/Current Activities

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

33

Future/Current Activities

◼ Spazio IT has just started working on Software
Verification and Validation and Artificial Intelligence
(especially Machine Learning). This research work is
active on two complementary fronts:

1. how to verify and validate AI software

2. how to improve the “traditional” verification and
validation activities with the adoption of AI
techniques.

◼ Some new generations of static analyzers may be based on
AI techniques.

June 2019

© 2019 Spazio IT - Soluzioni Informatiche s.a.s.

34

Thank you for your time!

June 2019

